320456 (20)

BE (4th Semester) Examination, Nov.-Dec., 2021

Branch: Civil

TRANSPORTATION ENGINEERING - I (NEW)

Time Allowed : Three Hours

Maximum Marks : 80

Minimum Pass Marks : 28

Note: Part (a) of each question is compulsory. Attempt any two parts from (b), (c) and (d) from each question. Draw neat sketch wherever necessary.

- Q. 1. (a) What are National Highways. 2
 - (b) Describe the factors controlling the highway alignment.7

	(c)	Wha	at are the basic requirements of an i	deal
		align	ment.	7
	(d)	Desi	ign the super elevation required a	at a
		horiz	zontal curve of radius 200 m for spee	ed of
		60 k	mph. Assume suitable data.	7
Q. 2.	(a)	Defi	ne traffic engineering.	2
	(b)	Expl	ain the following:	7
		(i)	Traffic capacity	
		(ii)	Basic capacity	
		(iii)	Possible capacity	
		(iv)	Practical capacity	

(c)	With neat sketches show various types
	of traffic signs, classify them in proper
	groups. 7
(d)	Explain the various measures that may be
	taken to prevent accidents. 7
Q. 3. (a)	Define radius of relative stiffness. 2
(b)	Calculate the stresses by Westerguard's
	formula at corner and edge of a concrete
	slab:
	(i) Wheel load = 4800 kg
	(ii) Modulus of elasticity of concrete = 2 ×
Printer.	10 ⁵ kg/cm ²

(iii) Pavement thickness = 20 cm

	(iv) Poisson's ratio = 0.15					
	(v) Modulus of sub grade reaction = 2 kg/	cm ³				
	(vi) Radius of contact area = 20 cm					
	(c) Enumerate the IRC recommendati					
	design of rigid pavement.	7				
	(d) Explain the following terms :	7				
	(i) Modulus of subgrade reaction					
	(ii) Radius of resisting section					
Q. 4.	(a) Define surface dressing.	2				
	(b) Describe the various steps in construction of					
	cement concrete road.	7				
	(c) Explain the various typical flexible paveme					
	failures.	7				

(d) Write short notes on :

7

2

- (i) Seal coat
- (ii) Mastic asphalt
- Q. 5. (a) Define cross wind component.
 - (b) Enumerate the various factors which you would keep in view while selecting a suitable site for an airport.
 - (c) The length of run way under standard conditions is 1620 m. The air port site has an elevation of 270 m. Its reference temperature is 32.94°C. If the run way is to be constructed with an effective gradient of 0.20 percent. Determine the corrected run way length.

(d) Explain the following:

7

- (i) Basic runway length
- (ii) Runway configuration
- (iii) Optimum location of exit taxiway